
Python 101/201

Agenda
●
●
●
●
●
●
●

What are Jupyter Notebooks?

How do Jupyter Notebooks Work?

Jupyter Notebooks, Structure
• Code Cells

• Markdown Cells

Jupyter Notebooks, Structure
• Markdown Cells

⋅⋅

⋅⋅

Jupyter Notebooks, Structure
• Markdown Cells

Jupyter Notebooks, Workflow

Jupyter Notebooks, Workflow

Jupyter Notebooks, Shortcuts
● Shift-Enter

●

Shift-Enter

Enter

Shift-Enter Cell |

Run

Jupyter Notebooks, Shortcuts
● Ctrl-Enter

●

Jupyter Notebooks, Shortcuts
● Alt-Enter

●

Shift-Enter Ctrl-m a Ctrl-m a

● Esc Enter

●

Introduction to Python

the magic number is:

4

Python

print “Hello World!”
Let's type that line of code into a Code Cell, and hit Shift-Enter:

Hello World!

Python

print 5

print 1+1
Let's add the above into another Code Cell, and hit Shift-Enter

5

2

Python - Variables

…

Python - Variables

five = 5
one = 1
print five
print one + one
message = “This is a string”
print message

Notice: We're not "typing" our variables, we're just setting them and allowing Python to type
them for us.

Python - Data Types

integer_variable = 100
floating_point_variable = 100.0
string_variable = “Name”

Notice: We're not "typing" our variables, we're just setting them and allowing Python to type
them for us.

Python - Data Types

 print type(integer_variable)

str(int/float)
int(str)
float(str)

Python - Arithmetic Operations

Python - Arithmetic Operations

print 5/2
print 5.0/2
print "hello" + "world"
print "some" + 1
print "number" * 5
print 3+5*2

Python - Arithmetic Operations

number1 = 5.0/2
number2 = 5/2

type()
type(number1)
type(number2)

int(number2)

Python - Reading from the Keyboard

var = input("Please enter a number: ")

Let's run this cell!

Python - Reading from the Keyboard

var2 = input("Please enter a string: ")

Let's run this cell!

put the word Hello as your input.

What happened?

Python - Making the output prettier

print "The number that you wrote was : ", numIn
print "The number that you wrote was : %d" % numIn

print "the string you entered was: ", stringIn
print "the string you entered was: %s" % stringIn

print " your string: %s\n your number: %d", %(numIn, stringIn)

for floating points, use %f

Python - Writing to a File

my_file = open("output_file.txt",'w')
vars = "This is a string\n"
my_file.write(vars)
var3 = 10
my_file.write("\n")
my_file.write(str(var3))
var4 = 20.0
my_file.write("\n")
my_file.write(str(var4))
my_file.close()

Python - Reading from a File

r read only (default)
w write mode: file will be overwritten if it already exists
a append mode: data will be appended to the existing file

Python - Reading from a File

my_file = open(“output_file.txt”,’r’)
content = my_file.read()
print content
my_file.close()

Python - Reading from a File

my_file = open("output_file.txt",'r')
vars = my_file.readline()
var5 = my_file.readline()
var6 = my_file.readline()
print "String: ", vars
print "Integer: ", var1
print "Float: ", var2
my_file.close()

Python - Reading from a File
…

with open("output_file.txt",'r') as f:
 vars = f.readline()
 var5 = f.readline()
 var6 = f.readline()
 print "String: ", vars
 print "Integer: ", var1
 print "Float: ", var2

Python - Control Flow

Python - if/else/elif

 if conditionA:
 statementA
 elif conditionB:
 statementB
 else:
 statementD
 this line will always be executed (after the if/else)

Python - if/else/elif

 if conditionA:
 statementA
 elif conditionB:
 statementB
 else:
 statementD
 this line will always be executed (after the if/else)

Python - if/else/elif

a = 2
b = 5

print a>b
print a<b
print a == b
print a != b
print b>a or a==b
print b<a and a==b

Python - if/else/elif

if var>10:
 print "You entered a number greater than 10"
else:
 print "you entered a number less than 10"

Python - if/else/elif

if condition1:
 statement1
 if condition2:
 statement2
 else:
 if condition3:
 statement3 # when is this statement executed?
else: # which ‘if’ does this ‘else’ belong to?
 statement4 # when is this statement executed?

Exercise:

Python - For Loops

…

for x in range(0, 3):
 print "Let's go %d" % (x)

Python - For Loops, nested loops

…

for x in range(0, 3):
 for y in range(0,5):
 print "Let's go %d %d" % (x,y)

Exercise:

Python - While Loops

i = 0 # Initialization
while (i < 10): # Condition
 print i # do_something
 i = i + 1 # Why do we need this?

Exercise:

Python - lists

mylist1 = [“first item”, “second item”]
mylist2 = [1, 2, 3, 4]
mylist3 = [“first”, “second”, 3]
print mylist1[0], mylist1[1]
print mylist2[0]
print mylist3
print mylist3[0], mylist3[1], mylist3[2]
print mylist2[0] + mylist3[2]

Python - lists

 print mylist3[0:3]
 print mylist3

 mylist3[0] = 10
 print mylist3

Python - lists

 len(mylist2)

 1 in mylist2

 len(mylist2)
 del mylist2[0]
 print mylist2

 for x in mylist2:
 print x

Exercise:

Python - lists

max(mylist), min(mylist)

my_list.append(new_item)

 my_list.index(item)

my_list.count(item)

Python - user defined functions

Python - user defined functions

Python - user defined functions

def userDefFunction (arg1, arg2, arg3
...):
 program statement1
 program statement3
 program statement3

 return;

Monte Carlo
Pi

Sequential Algorithm
A Monte Carlo algorithm for approximating π

uniformly generates the points in the square [-1, 1] x
[-1, 1]. Then it counts the points which lie in the
inside of the unit circle.

Sequential Algorithm
A Monte Carlo algorithm for approximating π uniformly
generates the points in the square [-1, 1] x [-1, 1]. Then it
counts the points which lie in the inside of the unit circle.

Sequential Algorithm
An approximation of π is then computed by the

following formula:

Linear Algebra

●
●
●
●
●
●
●

Linear Algebra

Linear Algebra

y = 4 * x + 1

Linear Algebra

y = 0.1 * x1 + 0.4 * x2
y = 0.3 * x1 + 0.9 * x2

Linear Algebra

1 = 0.1 * x1 + 0.4 * x2
3 = 0.3 * x1 + 0.9 * x2

Linear Algebra

5 = 0.1 * x1 + 0.4 * x2 + x3
10 = 0.3 * x1 + 0.9 * x2 + 2.0 * x3
3 = 0.2 * x1 + 0.3 * x2 - .5 * x3

Linear Algebra

● You can multiply any row by a constant (other than zero).

●

● You can switch any two rows.

●

● You can add two rows together.

●

Linear Algebra

Linear Algebra
Transpose

A defined matrix can be transposed, which creates a new matrix with the

number of columns and rows flipped.

This is denoted by the superscript “T” next to the matrix.

An invisible diagonal line can be drawn through the matrix from top left to

bottom right on which the matrix can be flipped to give the transpose.

Linear Algebra
Inversion

Matrix inversion is a process that finds another matrix that when multiplied

with the matrix, results in an identity matrix.

Given a matrix A, find matrix B, such that AB or BA = In.

The operation of inverting a matrix is indicated by a -1 superscript next to

the matrix; for example, A^-1. The result of the operation is referred to as

the inverse of the original matrix; for example, B is the inverse of A.

Linear Algebra
Trace

A trace of a square matrix is the sum of the values on the main

diagonal of the matrix (top-left to bottom-right).

Linear Algebra
Determinant

The determinant of a square matrix is a scalar representation of the

volume of the matrix.

The determinant describes the relative geometry of the vectors that

make up the rows of the matrix. More specifically, the determinant of

a matrix A tells you the volume of a box with sides given by rows of A.

— Page 119, No Bullshit Guide To Linear Algebra, 2017

http://amzn.to/2k76D4C

Algorithm
double approximatePi(int numSamples)
{
 float x, y;
 int counter = 0;
 for (int s = 0; s != numSamples; s++)
 {
 x = random number between -1, 1;
 y = random number between -1, 1;

 if (x * x + y * y < 1)
 {
 counter++;
 }
 }

 return 4.0 * counter / numSamples;
}

Google to see what command in Python produces a random number

Linear Algebra

Matrix Rank

The rank of a matrix is the estimate of the number of linearly

independent rows or columns in a matrix.

Linear Algebra - Matrix Arithmetic

Matrix Addition

Two matrices with the same dimensions can be added together to

create a new third matrix.

C = A + BC[0,0] = A[0,0] + B[0,0]

C[1,0] = A[1,0] + B[1,0]
C[2,0] = A[2,0] + B[2,0]
C[0,1] = A[0,1] + B[0,1]
C[1,1] = A[1,1] + B[1,1]
C[2,1] = A[2,1] + B[2,1]

Linear Algebra - Matrix Arithmetic
Matrix Subtraction

Similarly, one matrix can be subtracted from another matrix with the same

dimensions.

C = A - B

C[0,0] = A[0,0] - B[0,0]
C[1,0] = A[1,0] - B[1,0]
C[2,0] = A[2,0] - B[2,0]
C[0,1] = A[0,1] - B[0,1]
C[1,1] = A[1,1] - B[1,1]
C[2,1] = A[2,1] - B[2,1]

Linear Algebra - Matrix Arithmetic
Matrix Multiplication (Hadamard Product)

Two matrices with the same size can be multiplied together, and this is often called

element-wise matrix multiplication or the Hadamard product.

It is not the typical operation meant when referring to matrix multiplication, therefore a different

operator is often used, such as a circle “o”.

C = A o B
C[0,0] = A[0,0] * B[0,0]
C[1,0] = A[1,0] * B[1,0]
C[2,0] = A[2,0] * B[2,0]
C[0,1] = A[0,1] * B[0,1]
C[1,1] = A[1,1] * B[1,1]
C[2,1] = A[2,1] * B[2,1]

Linear Algebra - Matrix Arithmetic

Matrix Division

One matrix can be divided by another matrix with the same

dimensions.

C = A / B
C[0,0] = A[0,0] / B[0,0]
C[1,0] = A[1,0] / B[1,0]
C[2,0] = A[2,0] / B[2,0]
C[0,1] = A[0,1] / B[0,1]
C[1,1] = A[1,1] / B[1,1]
C[2,1] = A[2,1] / B[2,1]

Linear Algebra - Matrix Arithmetic
Matrix-Matrix Multiplication (Dot Product)

Matrix multiplication, also called the matrix dot product is more complicated than the previous

operations and involves a rule as not all matrices can be multiplied together.

One of the most important operations involving matrices is multiplication of two matrices.

The matrix product of matrices A and B is a third matrix C. In order for this product to be

defined, A must have the same number of columns as B has rows. If A is of shape m × n

and B is of shape n × p, then C is of shape m × p.

— Page 34, Deep Learning, 2016.

http://amzn.to/2B3MsuU

Linear Algebra - Matrix Arithmetic
Matrix-Matrix Multiplication (Dot Product)

 a11, a12
A = a21, a22
 a31, a32

 b11, b12
B = b21, b22

 a11 * b11 + a12 * b21, a11 * b12 + a12 * b22
C = a21 * b11 + a22 * b21, a21 * b12 + a22 * b22
 a31 * b11 + a32 * b21, a31 * b12 + a32 * b22

•
•

–
–
–

•
–
–
–

•

•

•

•

•

• ≈

•

•

• ẽ ẽ

•

•

•
•
•

⟹ ⟹

•
•

•
•
•

Given a square system of n linear equations:

where:

•
•

•
•

•
•

•
•

•
•

•
•

•

≠

Given a square system of n linear equations:

where:

•
•

•
•
•

•
•

•
•

•
•

•

•
•

•

Python - NumPy

NumPy, First Steps

import numpy as np
cvalues = [25.3, 24.8, 26.9, 23.9]
C = np.array(cvalues)
print(C)

NumPy, First Steps

print(C * 9 / 5 + 32)

fvalues = [x*9/5 + 32 for x in cvalues]
print(fvalues)

NumPy, Cooler things
import time
size_of_vec = 1000
def pure_python_version():
 t1 = time.time()
 X = range(size_of_vec)
 Y = range(size_of_vec)
 Z = []
 for i in range(len(X)):
 Z.append(X[i] + Y[i])
 return time.time() - t1

def numpy_version():
 t1 = time.time()
 X = np.arange(size_of_vec)
 Y = np.arange(size_of_vec)
 Z = X + Y
 return time.time() - t1

NumPy, Cooler things

t1 = pure_python_version()
t2 = numpy_version()
print(t1, t2)

Let's see which is faster.

NumPy, Multi-Dimension Arrays
A = np.array([[3.4, 8.7, 9.9],
 [1.1, -7.8, -0.7],
 [4.1, 12.3, 4.8]])
print(A)
print(A.ndim)

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B)
print(B.ndim)

NumPy, Multi-Dimension Arrays

x = np.array([[67, 63, 87],
 [77, 69, 59],
 [85, 87, 99],
 [79, 72, 71],
 [63, 89, 93],
 [68, 92, 78]])
print(np.shape(x))

The shape function:

NumPy, Multi-Dimension Arrays

x.shape = (3, 6)
print(x)

x.shape = (2, 9)
print(x)

The shape function can also *change* the shape:

NumPy, Multi-Dimension Arrays

x = np.array(42)
print(np.shape(x))

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B.shape)

A couple more examples of shape:

NumPy, Multi-Dimension Arrays

F = np.array([1, 1, 2, 3, 5, 8, 13, 21])

print the first element of F, i.e. the element with the index 0

print(F[0])

print the last element of F

print(F[-1])

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B[0][1][0])

indexing:

NumPy, Multi-Dimension Arrays

A = np.array([
[11,12,13,14,15],
[21,22,23,24,25],
[31,32,33,34,35],
[41,42,43,44,45],
[51,52,53,54,55]])

print(A[:3,2:])

print(A[3:,:])

slicing:

NumPy, Multi-Dimension Arrays

np.identity(4)

identity function

NumPy, By Example

 def TimeStep(self, dt=0.0):
 """Takes a time step using straight forward Python loops."""
 g = self.grid
 nx, ny = g.u.shape
 dx2, dy2 = g.dx**2, g.dy**2
 dnr_inv = 0.5/(dx2 + dy2)
 u = g.u
 err = 0.0
 for i in range(1, nx-1):
 for j in range(1, ny-1):
 tmp = u[i,j]
 u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
 (u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
 diff = u[i,j] - tmp
 err += diff*diff
 return numpy.sqrt(err)

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be
a rectangle and the boundary values at the sides of this rectangle are given.

NumPy, By Example

def numericTimeStep(self, dt=0.0):
 """Takes a time step using a NumPy expression."""
 g = self.grid
 dx2, dy2 = g.dx**2, g.dy**2
 dnr_inv = 0.5/(dx2 + dy2)
 u = g.u
 g.old_u = u.copy() # needed to compute the error.

 # The actual iteration
 u[1:-1, 1:-1] = ((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +
 (u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv

 return g.computeError()

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be
a rectangle and the boundary values at the sides of this rectangle are given.

NumPy, By Example
Algorithm.

* Find D, the Diagonal of of A : diag(A)

* Find R, the Remainder of A - D : A - diagflat(A)

* Choose your initial guess, x[0]
 * Start iterating, k=0
 * While not converged do
 * Start your i-loop (for i = 1 to n)
 * sigma = 0
 * Start your j-loop (for j = 1 to n)
 * If j not equal to i
 * sigma = sigma + a[i][j] * x[j]k
 * End j-loop
 * x[i]k = (b[i] – sigma)/a[i][i] : x = (b - dot(R,x)) / D
 * End i-loop
 * Check for convergence
 * Iterate k, ie. k = k+1

Jacobi

Pandas, What is it?

Pandas, First Steps

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Pandas, First Steps

s = pd.Series([1,3,5,np.nan,6,8])

s

Pandas, First Steps

dates = pd.date_range('20180101', periods=6)

dates

Pandas, First Steps

df = pd.DataFrame(np.random.randn(6,4),
index=dates, columns=list('ABCD'))

df

Pandas, First Steps

df2 = pd.DataFrame({ 'A' : 1.,'B' :
pd.Timestamp('20130102'),'C' :
pd.Series(1,index=list(range(4)),dtype='float32'),'D' :
np.array([3] * 4,dtype='int32'),'E' :
pd.Categorical(["test","train","test","train"]),'F' :
'foo' })

df2

Pandas, Viewing Data

df.head()

df.tail(3)

df.index

df.columns

df.values

df.describe()

df.T

df.sort_index(axis=1, ascending=False)

df.sort_values(by='B')

Pandas, Selecting Data by Label

df['A'])

df[0:3]

df['20130102':'20130104']

df.loc[dates[0]]

df.loc[:,['A','B']]

df.loc['20130102':'20130104',['A','B']]

df.loc['20130102',['A','B']]

df.loc[dates[0],'A']

Pandas, Selecting Data by Position

df.iloc[3]

df.iloc[3:5,0:2]

df.iloc[[1,2,4],[0,2]]

df.iloc[1:3,:]

df.iloc[:,1:3]

df.iloc[1,1]

df.iat[1,1]

Pandas, Summary of Features

Pandas, CSV Files

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000',
periods=1000))

ts = ts.cumsum()

df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,columns=['A',
'B', 'C', 'D'])

df = df.cumsum()

df.to_csv('foo.csv')

pd.read_csv('foo.csv')

Matplotlib, What is it?

Matplotlib, First Steps

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

Matplotlib, First Steps

x = np.linspace(0, 2 * np.pi, 50)

plt.plot(x, np.sin(x))

plt.show() # Show the graph.

Let's add the following lines, we're setting up x as an
array of 50 elements going from 0 to 2*pi

Matplotlib, a bit more interesting

plt.plot(x, np.sin(x),
 x, np.sin(2 * x))
plt.show()

Let's plot another curve on the axis

Matplotlib, a bit more interesting

plt.plot(x, np.sin(x), 'r-o',
 x, np.cos(x), 'g--')
plt.show()

Let's see if we can make the plots easier to read

Matplotlib, a bit more interesting
Colors:
Blue – ‘b’
Green – ‘g’
Red – ‘r’
Cyan – ‘c’
Magenta – ‘m’
Yellow – ‘y’
Black – ‘k’ (‘b’ is taken by blue so the last letter is
used)
White – ‘w’

Matplotlib, a bit more interesting
Lines:

Solid Line – ‘-‘
Dashed – ‘–‘
Dotted – ‘.’
Dash-dotted – ‘-:’

Often Used Markers:
Point – ‘.’
Pixel – ‘,’
Circle – ‘o’
Square – ‘s’
Triangle – ‘^’

Matplotlib, Subplots

plt.subplot(2, 1, 1) # (row, column, active area)
plt.plot(x, np.sin(x), 'r')
plt.subplot(2, 1, 2)
plt.plot(x, np.cos(x), 'g')
plt.show()

Let's split the plots up into subplots

Matplotlib, Scatter Plots

y = np.sin(x)
plt.scatter(x,y)
plt.show()

call the scatter() function and pass it two arrays of x
and y coordinates.

Let's take our sin curve, and make it a scatter plot

Matplotlib, add a touch of color

x = np.random.rand(1000)
y = np.random.rand(1000)
size = np.random.rand(1000) * 50
color = np.random.rand(1000)
plt.scatter(x, y, size, color)
plt.colorbar()
plt.show()

Let's mix things up, using random numbers and add a
colormap to a scatter plot

Matplotlib, add a touch of color

...
plt.scatter(x, y, size, color)
plt.colorbar()
...

Let's see what we added, and where that takes us

Matplotlib, Histograms

plt.hist(x, 50)
plt.show()

A histogram is one of the simplest types of graphs to plot in Matplotlib.
All you need to do is pass the hist() function an array of data. The
second argument specifies the amount of bins to use. Bins are intervals
of values that our data will fall into. The more bins, the more bars.

Matplotlib, Adding Labels and Legends

x = np.linspace(0, 2 * np.pi, 50)
plt.plot(x, np.sin(x), 'r-x', label='Sin(x)')
plt.plot(x, np.cos(x), 'g-^', label='Cos(x)')
plt.legend() # Display the legend.
plt.xlabel('Rads') # Add a label to the x-axis.
plt.ylabel('Amplitude') # Add a label to the y-axis.
plt.title('Sin and Cos Waves') # Add a graph title.
plt.show()

Let's go back to our sin/cos curve example, and add a bit of clarification
to our plots

mpld3, What is it?

mpld3, First Steps

pip install --user mpld3

mpld3, Demo

Summary

Questions? Comments?
charlie@tacc.utexas.edu

